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PREFACE
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Veterans Affairs (VA), Rehabilitation Research and Development Center, Edward Hines,
Jr. VA Hospital, Hines, Illinois 60141, under Agreement No. 93/FR5/166. Specifically,
the effort was performed in support of VA Pilot proposal No. C92-453AP (“Recognition
of Hand Gestures by People with Motor Impairments: A Feasibility Study”) under the
National Defense Authorization Act of 1987 which initiated cooperative medical research
programs between the VA and Department of Defense (DOD; VHA Directive 10-92-
103). The opinions, findings, and recommendations contained herein are those of the
authors, and do not necessarily represent those of the VA or DOD.

The authors wish to thank Mr. Ted Morris at the Hines VA Hospital for the
advocacy, insight and contribution he provided to this effort. The data analyzed in this
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INTRODUCTION
Background on Gesture Interfaces

The primary means of nonverbal communication is gestures. There are a variety
of static and dynamic signs that have been referred to as “gestures," including: “body
language," hand/finger forms, the grasp of open space, involuntary motions, and motions
driven by learned customs (Morita, Hashimoto, and Ohteru, 1991). The hand can be
considered the primary method by which humans manipulate systems in their
environment. Typically, hand manipulations with computer-mediated systems are
encumbered with intermediary devices (e.g., key, mouse, and joystick). This report will
focus on machine-recognition of hand gestures as an alternative control input to systems.
With a direct hand-to-machine interface, the operator’s hand gesture serves as the sole
controller.

Several classifications of controlled operations with hand gestures have been
defined. Rhyne (1987) contrasts gestures which point to a specific object/operation with
gestures that act to select a set of objects to be involved in an operation. These phases of
input, i.e., selecting an object and then selecting an operation, are also performed in mouse
pointing interfaces. However, a gestural interface can be designed to accomplish both
input phases simultaneously. For instance, the operator can acquire a hand position that
has been pre-defined as a grasp operation and the object, over which the hand is
positioned, denotes the object to be grasped (Zimmerman, Lanier, Blanchard, Bryson, and
Harvill, 1987). Thus, gesture-based control provides an excellent opportunity to consider
novel dialogues for the human-machine interface that may be more natural and efficient.

In another gesture classification, Purcell (1985) distinguishes gestural inputs that
serve as a command or positioning language separate from gestures that replicate or mimic
a task. The latter, often called “scripting by enactment," models gestures as an input to a
graphical animation system. Dolan’s classification can be viewed as making a similar
distinction (Dolan, Friedman, Nagurka, and Gotow, 1987). Occasional gestural inputs to
a preprogrammed, semi-autonomous operation are contrasted with real-time dedicated
positioning inputs. A taxonomy by Sturman and Zeltzer (1993) is even more detailed;
six broad combinations of hand actions and application interpretations are defined. First
hand gestures are divided into continuous actions (e.g., moving a finger), and discrete
actions (e.g., forming a fist or a waving hand). Next, there are three types of
interpretations that can be applied to the hand gesture: 1) direct or master-slave mode of
control - hand action maps directly to the task; 2) mapped - hand action is transformed
through a continuous mapping to task actions; and 3) symbolic - hand action is
interpreted as a symbol which comprises a command to the application.

Besides these classifications, gestural inputs can be categorized by whether they
involve specific movements made on a data recording device or involve free limb and hand




movement. In one approach, the operator makes specific gestures, relative to a two-
dimensional data tablet, which designate a desired operation. For example, a mouse might
be used to pass through displayed points that correspond to symbolic utterances,
triggering a synthetic speech system (Horowitz, 1990). Hand-drawn abstract symbols
can correspond to specific computer commands (Lipscomb, 1991). These “tablet-based”
gesture systems recognize characters based on shape, orientation, size, proportion,
velocity and timing of the input signal (Buxton, Flume, Hill, Lee, and Woo, 1983).
Syntactical rules are often required to make the system sufficiently robust to differentiate
between similar gestures (letter “0” and the number “0”, for example). In a second
approach, the gesture recognition system learns and recognizes gestures made with free
limb and hand movement in three-dimensional (3-D) space and subsequently translates
these inputs into specific computer-mediated operations. The remainder of this report
will focus on this second approach that involves recognizing a gesture input from the
whole-hand in 3-D space.

Gesture Sensing/Measurement

Sturman and Zeltzer (1994), as well as Huang and Pavlovic (1995) provide
excellent descriptions of a variety of techniques available to measure the position and
angle of body segments and joints used in gestures. Optical, magnetic, and ultrasonic
sensing (Zimmerman, et al., 1987) have been used for position tracking. Video-based
systems have been demonstrated which involve free-form image-based analysis (Suenaga,
Mase, Fukumoto, and Watanabe, 1993; Fukumoto, Suenga, and Mase, 1994; and for
American Sign Language recognition, Starner and Pentland, 1995). Non-contact, electric
field sensing techniques may enable 3-D position tracking without encumbering gloves
and cables (Zimmerman, Smith, Paradiso, Allport, and Gershenfeld, 1995). Movements of
a body segment in a dipole field are sensed as changes in displacement current to ground.
For measurment of hand and finger joint angles, glove-based techniques are currently the
only method that make whole-hand, gesture-based control practical.

A magnetic tracker is typically used with an instrumented glove to provide
simultaneous position, orientation and joint-angle data. Magnetic tracking systems use a
source element radiating a magnetic field and a small sensor that reports
position/orientation with respect to the source. Their accuracy and speed are adequate
for real-time gesture measurement. Moreover, this sensing technology does not have a
problem with occlusion (e.g., when one finger is in front of another) or maintaining line-
of-sight between a sensor and source. Individual fingers, however, are better tracked with
. glove-based systems. '

Glove-based systems are sufficiently lightweight and easily worn so as not to
conflict with normal hand activity. These devices are capable of recording and
transmitting to a host computer, in real-time, a numeric data-record of an operator’s
hand/finger shape and dynamics. There are three glove systems that are currently in use




to measure gesture signals: DataGlove™, Dexterous HandMaster™ and CyberGlove™.
The construction, sensing system and accuracy of these three systems are compared in
McMillan, Eggleston, and Anderson (in press).

- DataGlove™: Developed at VPL Research, Inc. in the late 1980s.
Fiber-optic cables run the length of each finger and thumb. Each cable has a
light-emitting diode at one end and a phototransistor at the other. Finger
flexion bends the cables, attenuating the light they transmit. Light received
by the phototransistor is converted into electrical signals proportional to joint
angle.

- Dexterous HandMaster™: Exoskeleton-like device worn on the fingers
and hand, making it a bit more cumbersome due to increased mass and less
stability. Potentiometers at each joint provide highly accurate flexion
measurement. System is marketed by EXOS and was developed for use with the
Utah/MIT Dexterous Hand Robot. More recent applications include
measurements involving fine motor skills and clinical analysis.

- CyberGlove™: Recently introduced by Virtual Technologies, Inc. and is
considered state-of-the art. Not only comfortable and easy to use, its accuracy
and speed are well suited for complex gestural and fine manipulations. The cloth
glove has foil strain gauges sewn into the back; the sensors measure finger and
thumb abduction, palm arch, and wrist bending, in addition to finger and thumb
joint angles.

Besides these three more sophisticated glove systems, a less accurate
measurement of hand position and shape can be obtained with an ultrasonic tracking
PowerGlove™ marketed by Mattel in 1989. This flexible molded plastic gauntlet with a
Lycra palm is designed to be used as a controller for several Nintendo™ video games.

In some applications of a glove-based system, the operator is also provided with
feedback after making a control input/manipulation. This feedback can be provided by
vibrotactile, auditory or electrotactile displays (e.g., Massimino and Sheridan, 1993). In
one implementation, piezoceramic benders mounted on the glove underneath the finger
provide a tingling or numbing sensation to add realism of interacting with virtual objects
(Zimmerman, et al., 1987). Without a specific feedback mechanism, operators of gestural
interfaces must rely on the system’s response to the recognized gesture. For instance, the
simulated movement in the direction indicated by a gesture or the synthesized speech
response following a sign language gesture provides the operator with feedback on the
system’s response to a gestural input.




Whole-Hand, Gestural Interface Development

The widespread availability of glove-based recording systems has encouraged their
application in a number of computer interfaces. The following describes some research
and development efforts along several lines of potential applications.

Natural control interface. Recent advances in developing virtual environments
have increased interest in the use of hand gestures as a control interface. One of the first
demonstrations of the potential for gestural interfaces was “Put-That-There”, a
conversational interface for manipulating virtual objects (Bolt, 1980). Users were able to
command simple shapes about a large-screen graphics display surface. Hand input
devices are also considered intuitive and powerful for control in 3-D environments
(Bordegon, 1994). In some implementations, the glove is used in conjunction with a host
computer that drives a real-time 3-D computer model of the hand, allowing the glove
wearer to “reach” into the surroundings and manipulate computer generated objects as if
they were real. This approach was used at NASA/Ames to allow engineers to put their
hands into a virtual wind tunnel and allow them to manipulate fluid flow patterns in real-
time (Bryson and Levit, 1992). With another system, operators used a Zglove (ultrasonic
position/orientation system) to manipulate objects in 3-D (Zimmerman, et al., 1987).
Three basic commands were used: grab (fingers closed in a fist), drop (fingers all opened),
and copy (few fingers opened). In a system developed by Weimer and Ganapathy at
AT&T Bell Laboratories (1989) for experimenting with natural 3-D interfaces, operators
wore a DataGlove™ for direct 3-D interaction with the computer models. The model of
the hand was built from the thumb and finger data components. In implementing the
interface, the index finger tip served as a stylus for locating, and thumb gestures, along
with voice commands, were used to initiate a pick. Three gestures were monitored by
measuring the abduction sensor on the thumb: picking, moving, or throwing (thumb drawn
in towards index finger to select object), clutching (to specify incremental
transformation/rotation), and throttling (to scale editing functions where thumb angle
scales effect of hand motion). The development of an icon-based notation for describing
and documenting gestures was part of an effort to control audio-visual presentation with
gestures captured by a DataGlove™ (Baudel and Beaudouin-Lafon, 1993).

It should be noted that many gesture-based control interfaces have included
speech recognition in their implementation. In a 3-D modeling system developed by
Weimer and Ganapathy (1989), a dramatic improvement in interface utility was realized
when speech recognition was added to the gestural commands in the implementation
design. The advantages of simultaneous use of spoken commands and gesture inputs was
also demonstrated in Bolt’s (1980) interface. In another gestural interface (Dolan, et al.,
1987), gestures were used to specify “where” and in “what orientation” a robotic action
was to be performed and voice commands were used to determine “which” subroutine
should be executed. Coupling gestural input with speech recognition can help amplify,




modify, and disambiguate commands from each input modality (see also, Takahashi,
Hakata, Shima, and Kobayashi, 1989).

Teleoperation/robotic control. Gestural interfaces also play a key role in virtual
environments implemented specifically to control remote systems. Many investigators
have explored the possibility of natural and intuitive hand gestures for teleoperation of
robots. For instance, gestural interfaces have been used to control dexterous robotic end
effectors (Fisher, 1986), a large telerobotic manipulator arm (Hale, 1992); a robot for
remote handling in a protected or hazardous factory environment (Mostafa, 1994), and a
six-legged mobile robot with manipulator arms (Sturman and Zeltzer, 1993). In the latter
application, the investigators examined three different control structures with whole-hand
input using a DataGlove™ and conventional input using a set of dials. For low level
walking, the whole-hand interface was superior. For high level manipulations, the whole-
hand input was on par with the conventional dials. For high-level steering, the whole-
hand interface was inferior to conventional dials, because of hand instability and the
difficulty exercising control at extreme rotations of the wrist.

Sign language interpretation. Sign language consists of a series of hand
gestures and is frequently used to assist communication with nonvocal and/or deaf
individuals. Use of a glove-based system during signing may provide sufficient
information for automatic recognition of gestures. Besides enabling the signing to serve as
a computer input and control, this translation ability can provide a written and/or vocal
output of the interpreted message. Machine recognition of gestures made during signing
facilitates communication with individuals who do not know or cannot view the visual
signs. For instance, a deaf person can “speak” to a hearing person by wearing the
TalkingGlove system (Kramer and Leifer, 1989). The CyberGlove™ can convert
fingerspelled words from the American Sign Language into synthesized speech for two-
way communication. The GloveTalk system developed at the University of Toronto
(Fels and Hinton, 1990) also involves mapping hand gestures to a speech synthesizer
with a DataGlove™. However, the GloveTalk maps complete hand gestures to whole
words, rather than individual letters. The overall hand shape represents a rootword and
movement forward and back in one of six directions determines the ending of the root
word (each direction coded to a specific ending). The duration and magnitude of the
gesture provide data on the rate of speech and stress to be given the word. Obviously,
such a system requires more training, but once trained, the communication rate can be
faster compared to systems which recognize individual letters. The GloveTalk
vocabulary totals 203 words, with 66 root words and 6 endings. The system was not
based on an existing sign language and each sign was either static or had limited motion.

Using experienced American Sign Language signers, Quam (1990) examined the
basic gesture recognition capabilities of the DataGlove™. In this study, fifteen gestures
were reliably recognized with ten flex sensors. A DataGlove™ was also used in an
experiment by ATR Research Labs in Japan involving recognition of 46 gestures of the



Japanese kana manual alphabet (Takahashi and Kishino, 1991). A total of 34 out of 46
static gestures were recognized in real-time. The authors noted that hand gestures that are
visually different were not always easily distinguished with the DataGlove™. Using the
“SLARTI” system, hand gestures involved in Auslan (Australian) sign language were
recognized and converted into a format suitable for use by a voice synthesizer (Vamplew
and Adams, 1992). The system incorporates position and motion detectors that provide
manual components (hand shape, place of articulation, orientation, and movement) of
Auslan signs.

Hand measurement research tool. Glove-based systems can also serve as a
useful tool in evaluating operator hand function requirements and performance in
specialized task environments (Fisher, 1986). For clinical applications, an instrumented
glove can provide surgeons and hand therapists with semi-automated, high resolution data
for the assessment of initial hand impairment and the evaluation of the results from
surgical and/or therapeutic rehabilitation (see Zimmerman, et al., 1987). In a study by
Wise, Gardner, Sabelman, Valainis, Wong, Glass, Drace, and Rosen (1990), a glove
system was used during a series of range-of-motion tests and found to have application
for prosthetic and rehabilitation engineering.

Entertainment. Besides the use of instrumented gloves with computer-based
puppetry (Robertson, 1988) and video games, the use of hand gestures in musical
performance has probably received the most attention. As early as 1985, Purcell reported
that investigators at the Massachusetts Institute of Technology were interested in
creating a graphical computer music conductor that combines human body tracker
technology and real-time computer music synthesis facilities. In this manner, a “digital”
orchestra can perform pre-programmed musical scores under the control of a virtual
conductor. A gestural interface developed by Morita et al. (1991) was used to control
acoustic parameters in live performances. By instrumenting the conductor’s baton, in
addition to DataGlove™ measurements, gestures were used to conduct the music.
Tracking an infrared light on the baton end with a CCD camera gave tempo information
and the position of the baton specified the group of instruments to be played from the
electronic orchestra.

Application Considerations for Whole-Hand, Gestural Interfaces

For able-bodied operations, gesture recognition can be used to augment more
traditional interfaces (e.g., keyboards or voice input). This alternative control is
particularly useful in those workload conditions and operational environments where it is
difficult to utilize conventional interfaces. For example, for pilots operating in high noise
conditions or experiencing high acceleration, it may be difficult to issue recognizable
verbal commands or to reach and select individual control functions. For such
environments, it may be useful to have a simple gestural command that will initiate a
series of preprogrammed functions until the situation changes such that the pilot can




resume normal operations. Gestural interfaces are also a key control technology
proposed for virtual reality applications.

Perhaps the more commonly recognized application of gestural interfaces is in the
field of rehabilitation. People with speech limitations and athetoid or spastic movements
from stroke or cerebral palsy find interfaces like keyboards, mice or joysticks of limited
use. Such people must use “sip-and-puff” controllers, eye-gaze systems, head-mounted
joysticks or head-movement control systems. Although these interfaces have some
utility, they reduce the freedom of head movement and the number of possible
control/command states. Accordingly, better interfaces are needed to extend the
independence of people with these limitations.

Thus, gestural interfaces have the potential of enhancing control operations in
numerous applications and by both able-bodied and disabled users. Hand gesture
recognition may provide a natural, adaptable, and dexterous means for humans to interact
with computer systems (Sturman and Zeltzer, 1994). The ability to specify operations
with a single intuitive gesture appeals to both novice and experienced operators (Rubine,
1991). Not only can a single gesture be equivalent to many keystrokes and mouse
actions, operation of such an interface is silent. Potential disadvantages that need to be
considered include the cost, training, communication speed, and accuracy of a gesture
recognition system compared to conventional approaches (Rhyne, 1987). Also,
transmittal of information with the gesture interface should not conflict with normal hand
function (Fisher, 1986). The importance of these factors is dependent on the nature of
the task being controlled and the application environment.

Challenges for Whole-Hand, Gestural Interface Design

The variety of plausible applications and the availability of glove-based systems
would suggest that gestural interfaces should be in wide use. However, for gestural
interfaces to serve as an efficient method of communication, these systems must reliably
interpret gestures (Horowitz, 1990). Present gesture recognition systems have difficulty
taking into account within and between individual variability. Moreover, these systems
have difficulty recognizing the limited and imprecise gestures that are typical of those
operating in a less than optimal operational environment or by people with athetoid or
spastic movements. The following two steps are key to enabling hand gesture recognition
to serve as an effective alternative controller: human factors design and algorithm
improvement. Each of these steps is addressed below.

Human factors design. Gestural interface design must take into account the
performance of the gesture sensing system and match the human’s gestural and
manipulation abilities with the coordination and real-time control requirements of the
task. Sturman and Zeltzer (1993) provide an excellent “design method for whole-hand
input.” Their highly disciplined method involves an iterative application of a structured




design flow. First, a series of questions is addressed to determine the feasibility of using
whole-hand input for a particular application or set of tasks and whether the gestural
interface is natural, adaptable, and dexterous for a particular application. Then, a
taxonomy is used to categorize the styles of interaction for whole-hand input. Next, an
evaluation guide is applied to decompose the application tasks into specific motions or
actions. In this manner, the capabilities of the hand can be compared with task
requirements along numerous dimensions (e.g., degrees-of-freedom, hand strength, range-
of-motion, speed, steadiness, etc.). Finally, a whole-hand input device is chosen and the
interface is tested in an application or simulation. Adherence to a design method such as
this will help ensure that application of gestural interfaces will be beneficial to overall
system performance.

Algorithm improvement. In that state-of-the-art glove-based systems provide
fairly accurate and timely measurements, a second challenge involves improving the
algorithms that translate gestural inputs into system commands. General-purpose gesture
recognition software typically comes with purchased systems. However, to optimize the
speed and accuracy in recognizing the specific set of gestures utilized in a particular
interface design, custom algorithm development is recommended. Movement prediction
algorithms may also be required for dynamic gestures in order to compensate for system
delays. Moreover, emphasis needs to be directed towards improving recognition
algorithms such that they are robust to variability within and between individuals and less
sensitive to variations induced by less than optimal operational environments (e.g.,
vibration) and operator hand impairment. For applications involving a continuous stream
of gestures, efficient segmentation algorithms are required. Furthermore, the ability to
recover from errors and make rapid corrections needs to be programmed. The following
section summarizes techniques used to date in processing gesture signals and developing
control algorithms.

Gesture Signal Processing

Recognition of static hand gestures is often based on look-up tables that contain
minimum/maximum values for each position and joint measurement. More sophisticated
algorithms perform some type of pattern analysis on the gesture signal. The data are
compared to references established for each hand sensor’s degree-of-freedom. To identify
a gesture, the match between the data and the reference must be within error tolerances
and these tolerances are often weighted by the amount each sensor input contributes to
the recognition of the gesture. A variety of statistically based approaches have been
utilized, including Bayesian rule-based techniques (Morris, 1994), deformable models
(Lanitis, 1995), edge-based techniques (Uras and Veri, 1995), feature analysis (Baudel and
Beaudouin-Lafon, 1993), hidden Markov Models (Starner and Pentland, 1995), state-
based representation (Wilson and Bobick, 1995), “sum of squares” method (Newby,
1993), and principle component analysis (Takahashi and Kishino, 1991). In the latter
reference, both principle component analysis and cluster analysis were used to determine




which fingers, etc. were critical in identifying static hand gestures of the Japanese kana
manual alphabet. These analyses provided a rough discrimination among their hand
configurations. However, to improve recognition, they established rules for joint bending
coding and orientation coding. Incoming gesture signal data were sorted according to these
codes and the major principle component. Final matching between a presented hand
gesture and the reference hand codes was determined by using the algebraic sum of joint

" membership values. In their experiment examining real-time gesture recognition, 34 of the

46 hand gestures were recognized correctly.

The above signal processing methods follow more traditional computing
techniques by executing instructions in a fixed sequential order. Artificial neural networks
offer an alternative approach to signal processing and employ software algorithms which
can be trained to learn the relationship that exists between input and output data,
including nonlinear relationships (Lippmann, 1987). Not only are neural networks
excellent for recognizing patterns in signals, but the algorithms can “learn” from example

data and generalize to unseen examples. A neural network is a biologically inspired
computational structure composed of many simple, highly interconnected processing

elements. These processing elements, or nodes, typically receive signals from several
nodes, process this information, and pass a signal onto several more nodes in a manner
analogous to biological neurons. The network designer specifies the number of
intermediate layers between the input and output units, the number of nodes per layer, as
well as the pattern of connections between the layers. Learning is accomplished by
adjusting weights, or strength between connections, of the network in order to minimize
the performance error over a set of example inputs and outputs. The set of input and
output pairs presented to the network during learning is referred to as the training set.
Other data sets not used during training are referred to as testing sets.

Using gesture recognition as an application example, conventional processing
methods involve a priori determination of what features in the gesture data are important
and the development of an algorithm to discriminate these features. With a neural
network, the algorithm learns what features are important for distinguishing inputs by
comparing gesture inputs with gesture standards in a training set. Moreover, since
processing is executed in parallel, use of neural networks increases real-time gesture
processing/recognition capability. The result is a system capable of automatically
adapting the mapping of an operator’s input with the output of the gesture recognizer,
tailoring the device control to each individual user or particular operational environment.

In an early application of neural networks for gesture recognition (Kramer and
Leifer’s Talking Glove, 1989), the algorithm selected the most probable letter from a
dictionary of previously stored hand formations that characterized the operator’s
“gesture signature.” During gesture inputs, the dictionary evolved as the recognition
algorithm adapted itself to track variations in letter formations. These authors identified a



need to incorporate position and velocity sensors/data to recognize more complex
gestures. :

In Fels and Hinton’s (1990) GloveTalk pilot study, five neural networks were
implemented for recognizing hand gestures made with a DataGlove™. Each network’s
design was tailored to focus on a different aspect of the recognition task: recognizing the
root word, word ending, word rate, word stress, and word initiation. For example, the
hand shape to root word network used sixteen input nodes (two flex angles per finger and
the sines and cosines of the roll, pitch and yaw of the hand). Using a multi-layer
perceptron feed-forward network appropriate for nonlinear nodes, a standard back-
propagation algorithm was employed. In this manner, the weights assigned to each node
were adjusted, in an iterative fashion, until the difference between the desired and actual
net outputs was minimized. This study served as a demonstration that neural networks
can learn complicated mappings from inputs to outputs; with a 203 gesture-to-word
vocabulary, only 7% of the trials resulted in no recognition output and 1% resulted in an
erroneous output.

An even more complex task was employed by Vamplew and Adams (1992) in
their evaluation of neural network processing for gesture recognition. Simulated
CyberGlove™ data for Australian sign language gestures was used in this “SLARTI”
pilot study. The processing system was divided into a series of linked smaller sub-
networks (20 separate single hidden-layers). Since the temporal components of these
signals were not pertinent, a standard feed-forward network using a back propogation
algorithm was used for recognizing individual gesture hand shape, location and orientation.
For motion and sign classification, though, a time delay neural network topology was
employed to utilize the temporal information available in the signals. The hand shape,
orientation and location networks served as pre-processors for the motion network which
itself served as a pre-processor for the main gesture classification network. Use of
multiple networks facilitated independent training, identification of errors and the addition
of new gesture signs. After training, the networks were connected by either training
additional connection nodes or using standard interactive code (i.e., creating a hybrid
system). A “committee system” was also evaluated whereby several nets were trained
and presented with the same test data. The output selected by most of the networks was
chosen as the system’s output. This method was found effective when high levels of
noise were present in the signals.

For recognizing a series of individual gestures (i.e., continuous signing), Vamplew
and Adams (1992) recommended that post-processing thresholds be added to the network
such that a gesture is only recognized if the sign output remains above a magnitude
threshold for a certain amount of time determined by a temporal threshold. The
individual gesture is also not considered “ended” until the output falls below a different,
lower magnitude threshold. Use of two magnitude thresholds would help avoid multiple
recognitions of the same gesture, due to noise in the gesture signal. In a later evaluation,
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Vamplew and Adams (1995) found that the use of thresholds enabled many sequences to
be classified before their actual end, with little impact on accuracy. This “anticipatory
classification” leads to the possibility of automatically detecting the individual gestures in
a string of continuous commands. A recurrent neural network was also used and found to
improve the number and complexity of hand motions that could be recognized.

Neural networks have also been used to interpret dynamic gesture movements
recorded with a DataGlove™ for robot control (Brooks, 1989). Multiple Kohonen
networks (Kohonen, 1984) operated concurrently on gesture signals to recognize several
gestures. Each net was trained to recognize a single gesture, specifically, paths traced by
finger motion in » - dimensional space of the digit’s degrees-of-freedom. Successful
recognition of simple gestures was achieved (e.g., closing all the fingers and moving from a
neutral hand posture to a grasp position). Brooks concluded that further development
was required to realize practical dynamic gesture recognition for robot control.

In a later study, Murakami and Taguchi (1991) used recurrent neural networks to
deal with the dynamic processes involved in gestures that specify a word in the Japanese
sign language. In a recurrent network, a set of context units provides the system with
memory as a trace of processing at the previous time slice. This history is used by the
recurrent network to enable recognition of time-series data. In an experiment on the
recognition of ten sign language words, the dynamic gesture recognition rate was 96%
when a recurrent network was used in conjunction with data encoding/filtering methods.

OBJECTIVE

The objective of this effort was to explore the utility of a neural network-based
approach to the recognition of whole-hand gestures. This effort was conducted to assist
the Rehabilitation Research and Development Center of the Hines VA Hospital in their
effort to recognize hand gestures made by people with athetoid or spastic movement of
the forearm or hand. Improvements realized in recognition performance will also benefit
the applicability of gestural interfaces as an alternative control for able-bodied operators.
In Air Force systems, machine-recognition of hand gestures may facilitate task
performance in less than optimal operational environments where use of conventional
controls is difficult or impossible.

METHOD
Subject Selection
For neural network development, three right-handed, able-bodied “pilot” subjects
were utilized. To validate the neural network approach, ten right-handed “experimental”

subjects were utilized: eight subjects had no motor abnormalities and two subjects were
stroke patients with hand motor impairments. All subjects were from a research pool
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maintained at the Department of Veterans Affairs, Edward Hines, Jr. VA Hospital, Hines
Illinois. Subjects were informed of the nature and purpose of the study and were asked to
sign consent forms prior to their participation. The data were collected at the Hines VA
Hospital and all procedures required by the VA Human Studies Coordination Board were
followed.

Materials

A DataGlove™ Model 2, manufactured by VPL Research, Inc., was used to
collect gesture related data (Figure 1). This system consists of a glove with 10 fiber-optic
joint angle sensors on the thumb and fingers and a Polhemus Fastrak® receiver attached to
the back of the glove (top of the hand) with a strong adhesive. The joint angle sensors
measured thumb and finger flexure at the inner (metacarpophalangeal) and outer (proximal
interphalangeal) joints. The Polhemus component provided six degree-of-freedom
location and orientation data (degrees) on the position of the hand. This electronic glove
enabled recognition of gestures, regardless of the rotational and lateral position of the hand
in 3-D space.

ABSOLUTE
POSITION AND

ORIENTATION FLEXION
SENSOR FIBER-OPTIC

SENSORS

ABDUCTION
SENSORS

Figure 1. Illustration of the instrumented glove used for gesture
data collection.

An 80486 66 MHz PC was used to implement the neural network software.
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Procedures

Gesture set. Subjects were asked to perform a subset of the manual alphabet
used by the deaf. These gestures were selected because they are static and previous
studies have found them to be separable (Quam, 1990). The dynamic letters (“J” and
“Z”) were excluded as well as characters that are ambiguous or clearly beyond the ability
of the DataGlove™ to distinguish (for instance, “R”, “U”, and “V” are all formed with
the index and middle fingers extended, and pointed up.) Appendix A provides an
illustration of the 25 gestures examined in this effort. The set includes 22 letters (not
“J7,“U”, “V”, and “Z”) and the numbers “1”, “3”, and “5.”

Gesture data collection. Subjects were seated at a table and fitted with the
DataGlove™ appropriate for the right hand. Standard calibration procedures were
conducted according to the system’s instructions, with the experimenter assisting the
subject in attaining the correct calibration positions.

Next, data collection trials were conducted, with subjects making one gesture per
trial. For each trial, the letter to be signed and a pictorial illustration of the corresponding
gesture was presented on a computer monitor. Subjects were instructed to adjust their
hand/finger positions to mimic the illustrated sign and then push a button with their
alternate (left) hand to signify completion of the gesture. Subjects were asked to maintain
the gesture for three seconds while multiple data samples were recorded (30
times/second). For each trial, from one to four samples were captured and recorded for
further analysis. Thus, there is some variability in the sizes of each individual’s data sets
for each gesture.

When a new gesture was presented on the monitor, subjects were told to relax
their hand for a few seconds and then begin acquiring the next gesture. Subjects were
allowed as much time as necessary for relaxing the hand and acquiring gestures, before
pushing the button to initiate data collection. For each member of the gesture set, 20
replications were conducted. The presentation order [of the 25 gestures x 20
replications] was random.

Subjects were instructed to notify the experimenter if they knew an error was
made in completing the gesture. The experimenter then pressed an “error” key which
commanded the data collection system to eliminate the sample recorded and present the
same letter command in a later trial.

Neural network design. The multi-layer perceptron network consisted of 12
inputs, 15 hidden nodes, and 25 outputs (see Figure 2). Ten of the 12 inputs were the
joint angles, 0-90 degrees, scaled to 0-1 by dividing by 90 (the number of degrees for
maximum flexion). The last two were hand orientation direction cosines derived from the
quaternion angles. We used the cosine of the angle between the hand’s lengthwise (wrist-
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to-fingers) axis to the vertical, and the spanwise axis to vertical. The angle between the
lengthwise axis and body front-to-back was specifically excluded for two reasons: there
are no characters that depend on this angle for recognition, and recognition needs to be
invariant to the direction the subject is facing. Appendix B provides an illustration of
how the data were transformed and applied.

25 OUTPUT NODES

O O
26%0°%0%0%°0%0%0%qala

15 HIDDEN NODES
0.0 0 0 0 0 0 Q

12 INPUTS
C O O O

N o N

Absolute Position and
Orientation Sensor

Figure 2. Illustration of the neural network design and source of inputs.
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Development and testing of neural network approach for gesture data.
Pilot data from three volunteer subjects were used to fine-tune the multi-layer perceptron
network and explore alternate network paradigms. Once the network development was
finalized using the pilot data, it was applied to the gesture data collected from the ten
experimental subjects. Performance of the various implementations was evaluated in
terms of percentage total recognition accuracy and the nature of the errors made. The
following section provides additional detail on the steps performed and the results found.

RESULTS
Neural Network Development

There were two independent data sets for each of the three pilot subjects and
these were first used to examine the effects of training and retraining with the proposed
network. Session A sessions were used to train the network and Session B sessions were
used to test the network. Figure 3 illustrates the sequence of steps performed and Figure
4 shows the percentage of gestures recognized for each of these manipulations of the
perceptron model network.

NETWORK
TRAINING
DATA INPUT SEQUENCE DATA OUTPUT
Subject Session
1 A [ TRAINING |
1,2,3 B H| TEST | > Recognition on Session B
2 A —| RETRAINING |
1,2,3 B Hl TEST ] > Recognition on Session B
3 A | RETRAINING |
1,2,3 B g r TEST | > Recognition on Session B

Figure 3. Illustration of the sequence of steps performed to develop and test
the neural network approach for gesture recognition.

The network was first trained on data from Session A of pilot subject 1 (PS1A).
This trained network was then tested on Session B data from all three pilot subjects
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(PS1B, PS2B, and PS3B). The results are shown in the first bar column of each subject’s
graph. As to be expected, recognition rates were the highest for PS1 (96.86%), since the
network was trained on data from that same subject. However, recognition rates for the
two other subjects were still quite good, 76.95% and 66.63% respectively.

Pilot Subject 1 Test Data Recognition

Percent Correct

100
90
80
70
60 - $ t
Trained Retrained Retrained
on on on

Subject 1 Subject 2 Subject 3

Training Condition

Pilot Subject 2 Test Data Recognition

Percent Correct
100
90
80
70
Trained ! Retrained : Retrained

on on on
Subject 1 Subject 2 Subject 3

Training Condition

Pilot Subject 3 Test Data Recognition

Percent Correct

100
90
80
70
1 1 I l +
Trained Retrained Retrained
on on on

Subject 1 Subject 2 Subject 3
Training Condition

Figure 4. Percent hand gestures recognized for each training/test
condition examined with the three pilot subjects.

16




Next, the network was retrained on data from Pilot Subject 2, Session A. This
retrained network was then reapplied to the Session B data from all three subjects. The
results are shown in the second column of each graph of Figure 4. Retraining the network
increased recognition of PS2’s data (94.41%) and left recognition of PS3’s data essentially
unchanged (65.74%). Recognition of PS1’s data dropped by over 8 percentage points to
88.60%.

The final manipulation involved retraining the network on Session A data from
PS3 and testing the retrained network on Session B data from the three subjects. The
results are shown in the third columns of each graph in Figure 4. Recognition rates
increased for both PS1 (slightly, to 90%) and PS3 (dramatically to 90.60%). Recognition
performance for PS2 dropped to 81.24%.

A comparison of the results shown in Figure 4 for the three subjects indicates that
gesture recognition was very good when the network was trained on the same subject (see
shaded columns), averaging 93.95%. While recognition by a trained network on the same
subject is quite good, cross speaker recognition suffered. In that it took less than one
minute to retrain the neural network, compared to the original network training time of
approximately 15 minutes, these results suggest that a trained network can learn a new

subject’s “gesture style” very quickly and thereafter would perform adequately for that
subject.

In a separate procedure, a network was trained with training data pooled from all
the pilot subjects. This procedure resulted in recognition rates in the 92-95% level for
pilot subject test data.

Neural Network Validation

The network trained on data pooled from all the pilot subjects was tested on data
from the ten experimental subjects. These novel subject data were recognized in the 40-
65% range. Retraining a base network on an individual is clearly the superior approach.

Therefore, the base network initially trained on one of the pilot subjects (PS1)
was retrained on one set of each of the ten experimental subjects. Then, this retrained
network was tested on novel data from the same subjects. Table 1 shows the recognition
accuracy obtained for each experimental subject, after retraining the base network and
reapplying the network.

As can be seen in these data, recognition rates are lower for those data sets that
were smaller or had recording problems. Nevertheless, with these subjects, the lowest
recognition rate was 79% and that was obtained with a subject with no motor
impairments. Averaged recognition rate for the subjects with motor impairments
(86.28%) was slightly lower than that for the able-bodied subjects (92.28%). Overall,
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recognition using the perceptron neural network model on the data recorded from the
DataGlove™ was quite good.

Table 1.
Recognition Rates for Experimental Subject
Data with Retrained Neural Network

Subject Percent | Note
Able-bodied: Correct
1 79.09 small data set
2 92.91
3 93.85
4 99.34
5 97.89
6 85.94 recording errors noted
7 89.96
8 96.40
Motor Impaired:
9 82.81 small data set
10 94.48 small data set

The data were also inspected to identify common sources of errors. Table 2
shows the common pairs of gestures in which the subject was trying to form one of the
gestures, and the system classified it as another. The gesture pairs are ordered according
to how many subjects exhibited the confusion. More than half of the pairs were confused
by more than one subject and the common confusions involved 12 members of the gesture
set. However, 50% of the confusions were made by two of the ten subjects (Subjects 1
and 7). The other eight subjects had four or fewer pairs of gestures that were confused.
This aspect of the data also indicates that gesture recognition with this approach is quite
good. For the majority of subjects, there were very few gestures that were confused.

Further examination of the signs for the confused letters suggests that many errors
can be attributed to limitations in the DataGlove™ recording system. Any application of
a gestural interface would need to address the sensor limitations of the measurement
system and either develop hand position sensors to record the required data or develop a
gesture vocabulary that matches the capabilities of available sensors.
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Table 2.
Letters Commonly

Confused
Letters Subject
Confused
A/S 1,2,7,8
1/D 2,4,6,7
A/T 3,6,8
Q/P 1,6,7
O/E 1,3
M/N 1,7
N/T 6,7
1/L 7,8
1/V 1
o/C 1
Q/L 1
S/T 2
D/L 2
S/E 7

Alternative Network Paradigm

In the development of the neural network architecture used in this effort, alternate
network paradigms were considered. One feature map network, the Kohonen self-
organizing feature map, was also implemented with the pilot subject data to further
explore its utility. A 25 by 25 node map architecture was used. Initial training employed
a neighborhood size of four nodes in each direction, and inputs were normalized to unit
length vectors before comparison and training.

Although the Kohonen network worked well, it required more time to implement
and the results were similar to that found with the perceptron architecture. The Kohonen
feature maps, though, nicely illustrate how gestures can be confused. For example, Figure
5 illustrates the gestures for “A” and “S” and provides the corresponding Kohonen
feature map. The similarity of the feature space available to the networks illustrates the
similarity of the gestures themselves and the importance of thumb sensors in the glove-
based systems. Thus, Kohonen feature maps can be utilized in the selection of an
optimal gesture set.
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Figure 5. Illustration of “A” and “S” hand gestures and corresponding
sample Kohonen feature maps.
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CONCLUSIONS

The results of this pilot study provide further evidence that neural networks are
very useful in the implementation of gesture recognition systems. Both the multi-layer
perceptron neural network and the Kohonen self-organizing feature map were explored.
Both showed promise, but the perceptron model was quicker to implement and
classification is inherent in the model. For the data collected in the present study,
recognition performance was quite good; the system was capable of distinguishing
gestures for the majority of subjects. Of special significance is the fact that the system
performed adequately for the two subjects with hand motor impairments.

The present pilot study, however, only utilized a small sample size and static
hand gestures, one gesture per experimental trial. Further research is required with a larger
sample of subjects and an experimental paradigm that directly compares recognition rates
obtained with a neural network approach with other candidate approaches. In this
manner, the relative payoff of using neural networks can be quantified. Also, further
design and investigation are required to develop techniques for recognizing gestures that
involve motion and identifying gestures in a string of commands.

The high recognition rates and quick network retraining times found in the present
study suggest that, with further development, a neural network approach to gesture
recognition will provide algorithms that are sufficiently robust to handle between and
within subject variability. Moreover, the “learning” capacity of neural networks should
enable the system to be adaptable to signal changes due to fatigue and/or motor
impairments or less than optimal operational environments (acceleration, vibration, etc.).
It is recommended that these findings be used as an impetus for development of an
improved neural network based gesture recognition prototype for further evaluation with
able-bodied and disabled subject populations.
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Appendix A

Gestures Used for Recognition
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Appendix B

Multi-Layer Feed-Forward Neural Networks

Neural networks “... attempt to achieve good performance via dense interconnection of simple
computational elements. In this respect, artificial neural net structure is based on our present
understanding of biological nervous systems” (Lippmann, 1987).

Single Node Perceptrons
A single computational element or neuromime is shown in Figure 1. The output value is given by

N
y =f(§w,~x,- -0) (B.1)

where

1
1+e™®

fl)= (B.2)

is the sigmoid equation (Figure 2) and x represents an input vector element, w represents the connection
weight, and 0 is a small random threshold. N is the number of elements in the input vector. It can be
shown (Lippmann, 1987) that Equation B.1 describes a hyperplane boundary (a straight line if there are
two inputs) in N-dimensional space between two regions. If vectors X = {x;,...,xx} which are separable
into two regions are applied to the inputs, the weights can be adapted so that the hyperplane divides the
two regions of points. The training algorithm, called the delta rule, is

Aw; =1(d - y)x, (B.3)
1<i<N
O<n<l1

where d is the desired output (0 or 1). After a number of training trials, the perceptron may converge {0 a
solution. In this way, the perceptron can classify the input vectors. The output can also be trained to
intermediate values between 0 and 1, to approximate continuous functions.

X
w;

Figure 1. Single Pcrceptron Node
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Figure 3. Multi-Layer Feed-Forward Network

Multi-Layer Perceptrons

It can be shown (Lippmann, 1987) that an arrangement of several nodes in each of three layers, where all
nodes in one layer (or all inputs) are connected to all nodes of the next layer, can separate an arbitrary
number of classes and regions with arbitrarily complex boundaries. This arrangement is schematically
shown in Figure 3. The complexity that a network can handle depends on the number of nodes in each

layer.
The extended training algorithm is called back propagation, and uses the generalized delta rule:
Aw,. =10.y, B4
where
6.=y.(1-y.)d -y.) ®.5)

if the current layer is the output where d. is the desired output of node ¢ and y, is the actual output or

6, =y.(1-y.)) 8w, ®B.6)
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if the current layer is an inner or hidden layer. In Equations B.4 through B.6, x denotes an input to a node
and y is its output. Note that the output of one node is an input to another in the next layer. The subscript
¢ denotes the current layer, while a denotes the layer above and b denotes the layer below. The 6 values in
Bquation B.1 are also adapted by back propagation. A more complete description and derivation can be
found in Rumelhart, Hinton and Williams (1986).

Perceptron Simulation

Although perceptrons are conceptually implemented as massively parallel networks of simple processors,
they can be simulated on a conventional digital computer. Thesc simulations are very computation
intensive, but if the net is small enough, it may be possible to run the simulation in real time as a
subroutine or on an appropriate external processor. The back propagation training algorithm is the most
time consuming part, but once the net is trained the weights can be transferred to a real time processor.

This is only one of many different neural network architectures. Others include the Kohonen self-
organizing map, the Grossberg ART networks, the Hopfield network, bidirectional associative memory,
and many more. Each has its own strengths and potential applications, but detailed descriptions of them
would be beyond the scope of this work.
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